Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Presented is the synthesis of cyclic polyacetylenes from alkynes and a study probing the functional group tolerance of catalyst 1. The synthesized polymers were characterized by employing GPC, NMR, and IR spectroscopy. The cyclic polyacetylenes spontaneously degrade, leading to the formation of lower molecular weight linear analogues. The degradation rate varied significantly based on the monomer substituents. These discoveries collectively reveal the functional group limits of catalyst 1 and the subsequent stability of the synthesized polymers, thus opening new avenues for advanced polymer design and applications.more » « less
-
Demonstrated is the successful A 2 + B 2 RAFT step-growth polymerization of bis-acrylamides using a bifunctional trithiocarbonate chain transfer agent as the comonomer. Remarkably, homopropagation typical of acrylamides leading to branching and crosslinking was not observed. Moreover, synthesized poly(acrylamides) can be degraded by simply adding excess ethanolamine or PBu 3 .more » « less
-
Commercially available N -aromatic substituted bismaleimides were used in RAFT step-growth polymerization with a bifunctional RAFT agent, affording polymers having moderate to high molecular weights. This advancement increases the accessibility of our previously reported methodology and allows preparation of graft copolymers in a straightforward manner at significantly larger scale.more » « less
-
Abstract An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side‐chain polymers to be grafted from the pendant RAFT agent by a radical‐mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one‐pot tandem without intermediate purification.more » « less
An official website of the United States government
